
Human factors in software
development

A study on database system adoption by developers

Ioanna Terzi

Human Computer Interaction

Group,

University of Patras

ioanna346terzi@gmail.com

Monica Divitini

Department of Information and

Computer Science,

Norwegian University of Science

and Technology

divitini@ntnu.no

Nikolaos Avouris

Human Computer Interaction

Group,

University of Patras

avouris@upatras.gr

Human factors in software
development

A study on database system adoption by developers

Ioanna Terzi

Human Computer Interaction

Group,

University of Patras

ioanna346terzi@gmail.com

Monica Divitini

Department of Information and

Computer Science,

Norwegian University of Science

and Technology

divitini@ntnu.no

Nikolaos Avouris

Human Computer Interaction

Group,

University of Patras

avouris@upatras.gr

70s 80s 90s 00s

The start

of

relational

databases

Relational

databases

become a

commercial

success

Need for

improvement in

databases since

more and more

people connect

online

Start of

Object

oriented

models

Creation of

Network and

hierarchical

databases

Internet
Start of

NoSQL

databases

2017 2018 2019 2020 2021 2022

% of

programmers

that worked

intensively in

every database

model MongoDB

MySQL

MariaDB

Oracle

SQLite

SQL Server
PostgreSQL

Redis

MongoDB

PostgreSQL

MySQL

SQL Server

SQLite

Oracle

Redis

MariaDB

2017 2018 2019 2020 2021 2022

% of

programmers

that worked

intensively in

every database

model MongoDB

MySQL

MariaDB

Oracle

SQLite

SQL Server
PostgreSQL

Redis

MongoDB

PostgreSQL

MySQL

SQL Server

SQLite

Oracle

Redis

MariaDB

So…

The adoption of recent database technology is

rather slow

Research questions

1. Investigate cases and criteria for using

NoSQL databases in different projects.

2. Challenges companies face when switching

their database model.

3. Benefits and drawbacks of using the

relational and document database model.

The sample…

Source: GORODENKOFF / SHUTTERSTOCK

Search for typical practisioners with the following characteristics:

1) Knowledge of the field of databases

2) Work experience as IT professional

9 Participants of various
levels of experience

10 Companies from
Norway and Greece

Fields of Information
technology and software
development

Interviews were:
-Semi- structured

-Face to Face

-Audio recorded

All policies related to data protection

were followed.
Source: Image by pressfoto on Freepik

Study Results

Would you consider using a NoSQL database in the following cases?

1. Programmers’ selection of database in different kinds

of projects

(a) Unpaid personal

project

(b) Paid individual

consultancy project without

being employed in a

company

(c) Paid project as part of the

employment in a company

Would you consider using a NoSQL database in the following cases?

1. Programmers’ selection of database in different kinds

of projects

(a) Unpaid personal

project

(b) Paid individual

consultancy project without

being employed in a

company

(c) Paid project as part of the

employment in a company

yes yes yesno no

Would you consider using a NoSQL database in the following cases?

1. Programmers’ selection of database in different kinds

of projects

(a) Unpaid personal

project

(b) Paid individual

consultancy project without

being employed in a

company

(c) Paid project as part of the

employment in a company

yes yes yesno no

Which are the criteria you consider when selecting the DBMS for a professional project?

2. Criteria of database adoption

Which are the criteria you consider when selecting the DBMS for a professional project?

2. Criteria of database adoption

1. Data types
Structured vs Unstructured data

2. Popularity of the model
Important for marketing reasons

(experienced particiants) and available

resources

‘I don’t want to be a
guinea pig, its important
to find answers quickly’

3. Programmer’s background
Previous experience with the model is

important

4. DBMS functionality
There are analytical pre-installed tools in

some DBMSs

5. Getting started
Minimal effort for the set up and the design

of the database

6. The domain of the application
The more interrelated the data, the more the

relational model fits.

‘For entities that are hierarchical, one directional,
MongoDB is good. For a two-dimensional
connection, a relational choice would be a better
choice.’

7. Budget

8. Technological context

9. Scalability

‘It just scales easily

to multiple nodes’

Why do companies appear to be hesitant to change their data model?

3. Company’s technology adoption

Why do companies appear to be hesitant to change their data model?

3. Company’s technology adoption

Transition time

For the 2 companies that attempted

it, it was 6 months and 2 years

respectively.

Cost

Human resources

Raises the issue of training

employees or hiring new ones.

Data sensitivity

The less contact with the data, the

more their confidentiality is ensured.

Operational continuity

Avoiding downtime.

Management approval

In your experience, what are the main benefits and drawbacks of using the relational and the

document database model?

4. Database perception by programmers

Relational model

(-) More complex and difficult model.

(+) Simpler model.

(-) Challenging at first.

(-) ERDs are hard.

(+) Good visualization.

(-) More time consuming to set it up.

(+) DBMSs are more mature.

(+) Supports understanding of other models.

(+) Easy to connect to programming languages.

(-) Not good option for hierarchies, trees, graphs.

(-) For complex problems the solutions become complex in

SQL because of nested queries.

NoSQL-Document Model (MongoDB)

(-) Much time needed to familiarize to JSON data type,

uncomfortable syntax.

(-) Not user-friendly environment.

(+) Ιnstallation and administration are more intuitive but there

is small difference.

(-) Frequent changes, that make you need the documentation.

(+) Ability to extract whole documents without filtering.

(+) More programmable.

(+) Better performance.

(+) Ideal choice for JSON data, web data, html.

(+) It's more scalable and works well in distributed

environments.

(+) Better for connections with one-direction.

(-) Lack of transactions support.

(-) Required more resources (memory) in comparison to

MySQL.

Relational model

(-) More complex and difficult model.

(+) Simpler model.

(-) Challenging at first.

(-) ERDs are hard.

(+) Good visualization.

(-) More time consuming to set it up.

(+) DBMSs are more mature.

(+) Supports understanding of other models.

(+) Easy to connect to programming languages.

(-) Not good option for hierarchies, trees, graphs.

(-) For complex problems the solutions become complex in

SQL because of nested queries.

NoSQL-Document Model (MongoDB)

(-) Much time needed to familiarize to JSON data type,

uncomfortable syntax.

(-) Not user-friendly environment.

(+) Ιnstallation and administration are more intuitive but there

is small difference.

(-) Frequent changes, that make you need the documentation.

(+) Ability to extract whole documents without filtering.

(+) More programmable.

(+) Better performance.

(+) Ideal choice for JSON data, web data, html.

(+) It's more scalable and works well in distributed

environments.

(+) Better for connections with one-direction.

(-) Lack of transactions support.

(-) Required more resources (memory) in comparison to

MySQL.

Contradiction 1

Relational model

(-) More complex and difficult model.

(+) Simpler model.

(-) Challenging at first.

(-) ERDs are hard.

(+) Good visualization.

(-) More time consuming to set it up.

(+) DBMSs are more mature.

(+) Supports understanding of other models.

(+) Easy to connect to programming languages.

(-) Not good option for hierarchies, trees, graphs.

(-) For complex problems the solutions become complex in

SQL because of nested queries.

NoSQL-Document Model (MongoDB)

(-) Much time needed to familiarize to JSON data type,

uncomfortable syntax.

(-) Not user-friendly environment.

(+) Ιnstallation and administration are more intuitive but there

is small difference.

(-) Frequent changes, that make you need the documentation.

(+) Ability to extract whole documents without filtering.

(+) More programmable.

(+) Better performance.

(+) Ideal choice for JSON data, web data, html.

(+) It's more scalable and works well in distributed

environments.

(+) Better for connections with one-direction.

(-) Lack of transactions support.

(-) Required more resources (memory) in comparison to

MySQL.

Contradiction 1

‘Simplicity was the selling
point of SQL when it was
launched’

‘’

‘It requires a lot of engineering to build a
good SQL, I believe people without
university knowledge find it scary’

Relational model

(-) More complex and difficult model.

(+) Simpler model.

(-) Challenging at first.

(-) ERDs are hard.

(+) Good visualization.

(-) More time consuming to set it up.

(+) DBMSs are more mature.

(+) Supports understanding of other models.

(+) Easy to connect to programming languages.

(-) Not good option for hierarchies, trees, graphs.

(-) For complex problems the solutions become complex in

SQL because of nested queries.

NoSQL-Document Model (MongoDB)

(-) Much time needed to familiarize to JSON data type,

uncomfortable syntax.

(-) Not user-friendly environment.

(+) Ιnstallation and administration are more intuitive but there

is small difference.

(-) Frequent changes, that make you need the documentation.

(+) Ability to extract whole documents without filtering.

(+) More programmable.

(+) Better performance.

(+) Ideal choice for JSON data, web data, html.

(+) It's more scalable and works well in distributed

environments.

(+) Better for connections with one-direction.

(-) Lack of transactions support.

(-) Required more resources (memory) in comparison to

MySQL.

Relational model

(-) More complex and difficult model.

(+) Simpler model.

(-) Challenging at first.

(-) ERDs are hard.

(+) Good visualization.

(-) More time consuming to set it up.

(+) DBMSs are more mature.

(+) Supports understanding of other models.

(+) Easy to connect to programming languages.

(-) Not good option for hierarchies, trees, graphs.

(-) For complex problems the solutions become complex in

SQL because of nested queries.

NoSQL-Document Model (MongoDB)

(-) Much time needed to familiarize to JSON data type,

uncomfortable syntax.

(-) Not user-friendly environment.

(+) Ιnstallation and administration are more intuitive but there

is small difference.

(-) Frequent changes, that make you need the documentation.

(+) Ability to extract whole documents without filtering.

(+) More programmable.

(+) Better performance.

(+) Ideal choice for JSON data, web data, html.

(+) It's more scalable and works well in distributed

environments.

(+) Better for connections with one-direction.

(-) Lack of transactions support.

(-) Required more resources (memory) in comparison to

MySQL.

Contradiction 2

Relational model

(-) More complex and difficult model.

(+) Simpler model.

(-) Challenging at first.

(-) ERDs are hard.

(+) Good visualization.

(-) More time consuming to set it up.

(+) DBMSs are more mature.

(+) Supports understanding of other models.

(+) Easy to connect to programming languages.

(-) Not good option for hierarchies, trees, graphs.

(-) For complex problems the solutions become complex in

SQL because of nested queries.

NoSQL-Document Model (MongoDB)

(-) Much time needed to familiarize to JSON data type,

uncomfortable syntax.

(-) Not user-friendly environment.

(+) Ιnstallation and administration are more intuitive but there

is small difference.

(-) Frequent changes, that make you need the documentation.

(+) Ability to extract whole documents without filtering.

(+) More programmable.

(+) Better performance.

(+) Ideal choice for JSON data, web data, html.

(+) It's more scalable and works well in distributed

environments.

(+) Better for connections with one-direction.

(-) Lack of transactions support.

(-) Required more resources (memory) in comparison to

MySQL.

Contradiction 2

‘There are 3 potential interfaces to ana

application: UI, programming and SQL.

MongoDB offers all 3, while relational DBMSs

are more restricted and require to download a

plug-in for the other interfaces

Relational model

(-) More complex and difficult model.

(+) Simpler model.

(-) Challenging at first.

(-) ERDs are hard.

(+) Good visualization.

(-) More time consuming to set it up.

(+) DBMSs are more mature.

(+) Supports understanding of other models.

(+) Easy to connect to programming languages.

(-) Not good option for hierarchies, trees, graphs.

(-) For complex problems the solutions become complex in

SQL because of nested queries.

NoSQL-Document Model (MongoDB)

(-) Much time needed to familiarize to JSON data type,

uncomfortable syntax.

(-) Not user-friendly environment.

(+) Ιnstallation and administration are more intuitive but there

is small difference.

(-) Frequent changes, that make you need the documentation.

(+) Ability to extract whole documents without filtering.

(+) More programmable.

(+) Better performance.

(+) Ideal choice for JSON data, web data, html.

(+) It's more scalable and works well in distributed

environments.

(+) Better for connections with one-direction.

(-) Lack of transactions support.

(-) Required more resources (memory) in comparison to

MySQL.

Relational model

(-) More complex and difficult model.

(+) Simpler model.

(-) Challenging at first.

(-) ERDs are hard.

(+) Good visualization.

(-) More time consuming to set it up.

(+) DBMSs are more mature.

(+) Supports understanding of other models.

(+) Easy to connect to programming languages.

(-) Not good option for hierarchies, trees, graphs.

(-) For complex problems the solutions become complex in

SQL because of nested queries.

NoSQL-Document Model (MongoDB)

(-) Much time needed to familiarize to JSON data type,

uncomfortable syntax.

(-) Not user-friendly environment.

(+) Ιnstallation and administration are more intuitive but there

is small difference.

(-) Frequent changes, that make you need the documentation.

(+) Ability to extract whole documents without filtering.

(+) More programmable.

(+) Better performance.

(+) Ideal choice for JSON data, web data, html.

(+) It's more scalable and works well in distributed

environments.

(+) Better for connections with one-direction.

(-) Lack of transactions support.

(-) Required more resources (memory) in comparison to

MySQL.

Aggreement

Discussion

Experience

Functionality

User Experience

So,

about the prevailance of the relational model…

Thank you!
For more details, please read our study’s paper.

Source: Image by eightonesix on Freepik

Question time!

	Διαφάνεια 1: Human factors in software development
	Διαφάνεια 2: Human factors in software development
	Διαφάνεια 3
	Διαφάνεια 4
	Διαφάνεια 5
	Διαφάνεια 6
	Διαφάνεια 7
	Διαφάνεια 8
	Διαφάνεια 9
	Διαφάνεια 10
	Διαφάνεια 11
	Διαφάνεια 12
	Διαφάνεια 13
	Διαφάνεια 14
	Διαφάνεια 15
	Διαφάνεια 16
	Διαφάνεια 17
	Διαφάνεια 18
	Διαφάνεια 19
	Διαφάνεια 20
	Διαφάνεια 21
	Διαφάνεια 22
	Διαφάνεια 23
	Διαφάνεια 24
	Διαφάνεια 25
	Διαφάνεια 26
	Διαφάνεια 27
	Διαφάνεια 28
	Διαφάνεια 29
	Διαφάνεια 30
	Διαφάνεια 31
	Διαφάνεια 32
	Διαφάνεια 33
	Διαφάνεια 34
	Διαφάνεια 35
	Διαφάνεια 36: Question time!

