

Pseudo-Haptic and Self-Haptic Feedback during VR Text Entry

KOUNALAKI MARIA, IOULIA SIMOU, ANDREAS KOMNINOS

HUMAN-COMPUTER INTERACTION

"We must design for the way people behave, not for how we would wish them to behave."

- DONALD A. NORMAN, LIVING WITH COMPLEXITY

Defining the problem

Aim:

Efficient and accurate text input methods in VR environment with bare hands

Challenge:

Absence of physical keyboards is need to provide users with appropriate tactile feedback

Proposal:

- Self-haptics which utilizes the user's own body as a surface to provide tactile feedback compared to pseudo-haptics
- Bimanual input method for VR text entry: highlight keys with one hand & pinch-to-select gesture with second hand

Implementation & Design (1)

Technology & Materials:

- HTC Vive VR headset
- Ultraleap's Leap Motion Controller (hand tracking)
- Unity game development platform (C#)
- Plugin: Ultraleap Unity API
 - Core
 - Interaction Engine
 - Hand Models

Implementation & Design (2)

Scenes:

- "One handed Interaction" scene Pseudo-haptics (K2)
- "Two handed Interaction" scene Self-haptics (K1)

Research Questions:

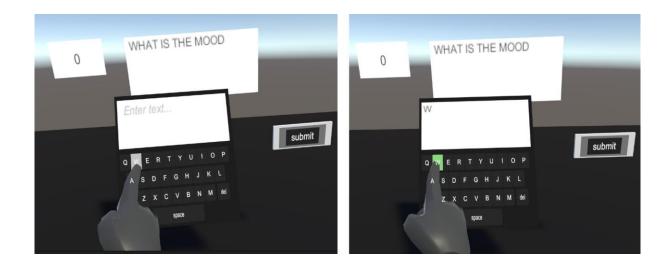
Text entry speed, error rates, user experience

Keyboard development

QWERTY layout

- Keyboard Screen: Canvas GameObject with InputField
- UI panel with keys: alphabet letters, space button, backspace button (InteractionBehaviours)

"InteractionBehaviours" components (aka Interaction Objects):

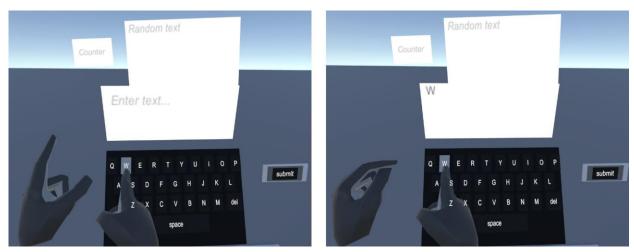

- Enable GameObjects to interact with interaction controllers (Leap Hands)
- Poked, prodded, smacked, grasped, thrown around
- Hovering, contact, grasping callbacks
- InteractionButton" components: Physics-enabled button with events for "press" and "unpress"

Pseudo-haptics (K2) scene (1)

One hand interaction:

Hover and Press with index finger

- Color feedback:
- Keys proximal to the finger tip are highlighted grey
- Successfully Pressed keys turn green


Self-haptics (K1) scene (1)

Two hands interaction:

Hover with R index finger and Pinch with L thumb and index

Self-haptic with Pinch detector:

- Keys proximal to the R finger tip are highlighted grey
- Connect L thumb and index to Click

Experiment Design (1)

Investigate text entry speed, error rates, user experience

- Three conditions:
 - real mobile keyboard (participant skill baseline), WebTEM online platform
 - two VR applications K1, K2 (counterbalanced order)
- Within-Group Design
- 21 phrases: 3 blocks of 7 random phrases (Vetranen & McKenzie's Memorable Phrase Set, "200 Memorable English Phrases" phrase set)

2 questionnaires:

- Demographic data pre-questionnaire: age, gender, current employment status, English knowledge level, previous VR experience, personal VR ownership, frequency of use, subjective typing skills ratings (Likert scale 1-5)
- Game Experience Questionnaire (GEQ): Immersion, Flow, Competence, Positive & Negative Affect, Tension, Challenge (5-point intensity scale 1-5)

Experiment Design (2)

Data collected:

- Baseline session: WebTEM online platform (WPM, ER, KSPC, CER, TER etc.)
- VR sessions:
 - Custom code using StreamWriter to capture input streams
 - 2 CSV files "PhraseSessions.csv", "TypingEvents.csv" (ID, timestamps, random phrase, submitted phrase, pressed character etc.)

Procedure:

- 1. Pre-experiment demographics questionnaire / Arrange date and time
- 2. Integration & familiarization / Consent form & potential risks / Experiment description
- 3. WebTEM Baseline sessions
- 4. VR sessions with small breaks between blocks & user experience questionnaire after each session

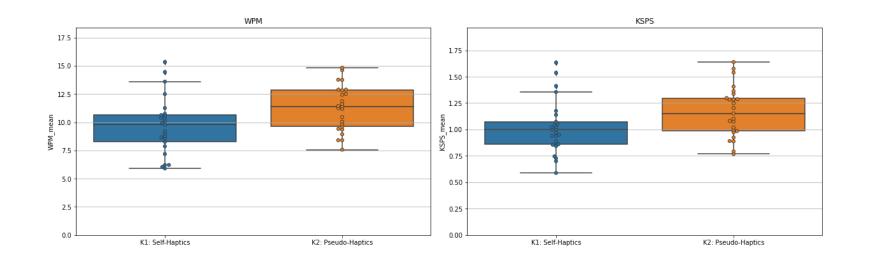
Experimental Results (1)

Participants:

- 24 (8 female, 16 male)
- 19-32 years old (*x* =23.16, s=3.646)
- 7 participants with previous experience, 1 owner of VR equipment
- English skills: 5 Intermediate (B2), 3 Advanced (C1), 16 Proficient (C2)
- Mobile Typing skills (1-very bad, 5=very good): \bar{x} =3.52, σ =0.73 (min=2, max=5)
- WebTEM results:
 - WPM x
 =33.739, σ=6.519, min=22.198, max=55.115
 - TER x̄ =3.170, σ=2.516, min=0.0, max=10.392

In-line with expected performances

Metrics (Dependent Variables):

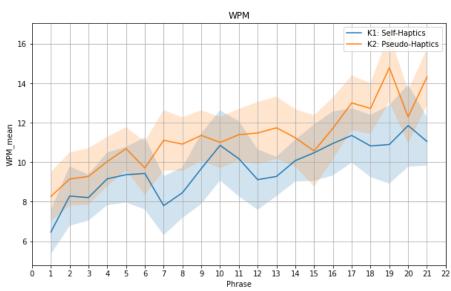

- Text entry speed (WPM, KSPS)
- Error Rates (TER, KSPC)

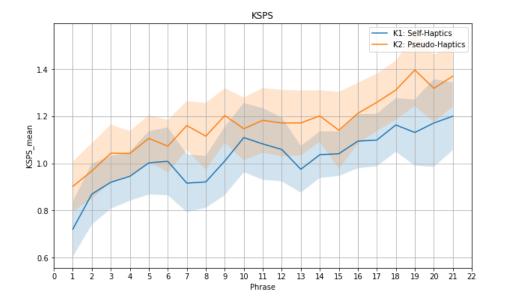
Text Entry Speed (1)

Results:

- K2 faster text entry than K1
- Not very high text entry speed due to:
 - Novelty of experience
 - Leap motion tracking accuracy
 - Targets' size

		K1: Self-haptics	K2: Pseudo-haptics	Statistical test
1	WPM	9.657 (2.511)	11.249 (2.010)	t= -3.803, p=0.001
	KSPS	1.019 (0.252)	1.164 (0.239)	t= -3.893, p=0.001

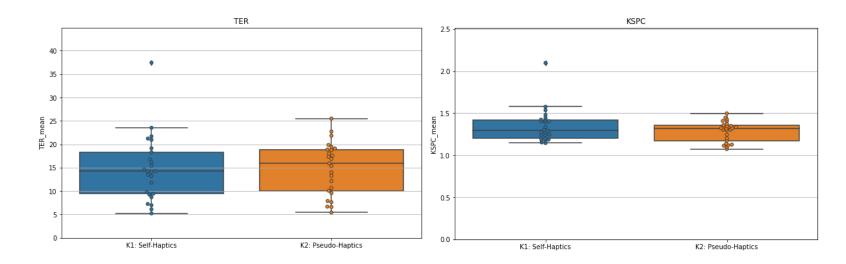



Text Entry Speed (2)

Performance over time:

- Improving WPM & KSPS
- Low entry rates almost doubled

Participants become more proficient with training

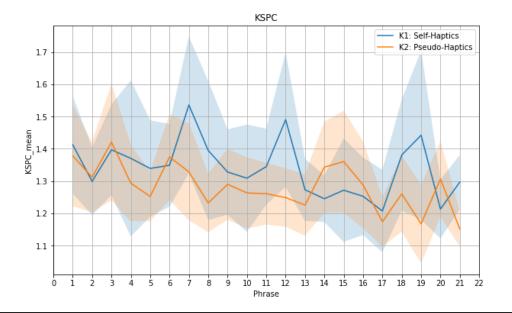


Error Metrics (1)

Results:

 Near identical performance, no statistically significant difference

		K1: Self-haptics	K2: Pseudo-haptics	Statistical test
,	TER	14.756 (6.993)	14.843 (5.596)	Z=149.0, p=0.731
	KSPC	1.344 (0.199)	1.283 (0.121)	Z=109.0, p=0.156


Error Metrics (2)

Performance over time:

- Decreasing numbers
- Less errors over time

Participants become more proficient with training

Subjective Feedback

Difficulty synching the select and confirm actions (3)

Combination of color highlighting and pinch gesture (4)

GEQ component	K1: Self-haptics	K2: Pseudo-haptics	Statistical test	
Competence	3.760 (0.698)	3.792 (0.471)	t= -0.278, p=0.784	
Sensory & Imaginative Immersion	3.787 (0.700)	3.687 (0.568)	t=0.888, p=0.383	Statistical
Flow	3.136 (0.840)	2.920 (0.619)	Z=61.0, p=0.019	difference in
Tension/Annoyance	1.613 (0.756)	1.667 (0.674)	Z=80.5, p=0.827	favour of K1 (self-haptics)
Challenge	2.104 (0.545)	2.056 (0.508)	t=0.456, p=0.653	()
Negative affect	1.810 (0.469)	1.780 (0.588)	Z=112.5, p=0.916	
Positive affect	4.056 (0.803)	4.016 (0.565)	t=0.282, p=0.780	
Reported to be fun (6) Afford good control over input (6) Faster typing once mastered (7) Problems with hand tracking and pinch recognition (6) Tired because of the two hands interaction (8)		0	action (2)	()

 \mathcal{W} Tracking issues producing erroneous events, less control (10)

Conclusions (1)

'Pseudo-haptics and self-haptics for freehand mid-air text entry in VR', Kim and Xiong:

- Self-haptic vs pseudo-haptic on large QWERTY keyboard (desktop size)
- Typing with both hands

Comparison between performance metrics in our study and Kim and Xiong

	Kim and Xiong		Our study	
Feedback	Self-haptic	Pseudo-haptic	Self-haptic	Pseudo-haptic
WPM	19	19	9.657	11.249
CER	$\bar{x} = 9.3\%$	$\overline{x} = 11.4\%$	\overline{x} = 13.4%	\overline{x} = 13.6%

Conclusions:

- Reasonable difference in entry speed: participants typed with one hand on small area
- Small difference in CER: keyboard small size and hand-tracking issues (different hardware used)

Conclusions (2)

'Pinchtext', Jiang et al.:

- One-handed input on 12-key keyboard
- Lower arm to select keyboard row
- Pinch between thumb and index, middle, ring to select columns
- Conductive tape to detect pinch gesture ≠ bare hands interaction

Comparison between performance metrics in our study and Jiang et al. (Pinchtext)

	Jiang et al.	K1 (our study)	Jiang et al.	K1 (our study)
Phrase range	1 - 10		11 - 20	
WPM	6.10 - 8.13	8.90	8.54 - 9.02	10.59
CKER ^a /CER ^b	8 - 13% ^a	14.46% ^b	8 - 9% ^a	12.06% ^b

Conclusions:

Bimanual method has potential for higher text entry rates with comparable error rates

Future Work

Address reported hand tracking issues => enhance user experience and reduce frustrations

More intuitive and comfortable single-handed interaction reduce the need for coordination

•Ergonomic considerations and design adjustments (optimizing hand and arm movements) => minimize physical strain, reduce fatigue

- Additional visual feedback (color highlighting/cursor) = enhance understanding & user experience and reduce uncertainty during text entry
- Training & mastery (training resources/tutorials/interactive exercises/feedback mechanisms) improve proficiency and speed
- Error reduction cursor as indicator or adding gestures for error correction input actions, frustration reduction
- Conduct studies with more experienced or familiar participants additional feedback on system's usability and performance

Results:

Enhance user satisfaction, increase input efficiency, reduce fatigue, provide seamless and immersive text entry experience

THANK YOU!!!

CLEARED FOR TAKEOFF